Hierarchical Spatio-Temporal Mapping of Disease Rates
نویسندگان
چکیده
Maps of regional morbidity and mortality rates are useful tools in determining spatial patterns of disease. Combined with socio-demographic census information, they also permit assessment of environmental justice, i.e., whether certain subgroups suuer disproportionately from certain diseases or other adverse eeects of harmful environmental exposures. Bayes and empirical Bayes methods have proven useful in smoothing crude maps of disease risk, eliminating the instability of estimates in low-population areas while maintaining geographic resolution. In this paper we extend existing hierarchical spatial models to account for temporal eeects and spatio-temporal interactions. Fitting the resulting highly-parametrized models requires careful implementation of Markov chain Monte Carlo (MCMC) methods, as well as novel techniques for model evaluation and selection. We illustrate our approach using a dataset of county-speciic lung cancer rates in the state of Ohio during the period 1968{1988.
منابع مشابه
Assessment of Neonate's Congenital Hypothyroidism Pattern Using Poisson Spatio-temporal Model in Disease Mapping under the Bayesian Paradigm during 2011-18 in Guilan, Iran
Background: Congenital Hypothyroidism (CH) is one of the reasons for mental retardation and defective growth in neonates. It can be treated if it is diagnosed early. The congenital hypothyroidism can be diagnosed using newborn screening in the first days after birth. Disease mapping helps to identify high-risk areas of the disease. This study aimed to evaluate the pattern of CH using the Poisso...
متن کاملAN ADDITIVE MODEL FOR SPATIO-TEMPORAL SMOOTHING OF CANCER MORTALITY RATES
In this paper, a Bayesian hierarchical model is used to anaylze the female breast cancer mortality rates for the State of Missouri from 1969 through 2001. The logit transformations of the mortality rates are assumed to be linear over the time with additive spatial and age effects as intercepts and slopes. Objective priors of the hierarchical model are explored. The Bayesian estimates are quite ...
متن کاملA New Wavelet Based Spatio-temporal Method for Magnification of Subtle Motions in Video
Video magnification is a computational procedure to reveal subtle variations during video frames that are invisible to the naked eye. A new spatio-temporal method which makes use of connectivity based mapping of the wavelet sub-bands is introduced here for exaggerating of small motions during video frames. In this method, firstly the wavelet transformed frames are mapped to connectivity space a...
متن کاملHierarchical Models for Mapping Ohio Lung Cancer Rates
The mapping of geographical variation in disease occurrence plays an important role in assess ing environmental justice i e the equitable sharing of adverse e ects of pollution across socio demographic subpopulations Bayes and empirical Bayes methods can be used to obtain stable small area estimates while retaining geographic and demographic resolution In this study we fo cus on modeling spatia...
متن کاملSpatio-temporal models with errors in covariates: mapping Ohio lung cancer mortality.
In estimating spatial disease patterns, as well as in related assessments of environmental equity, regional morbidity and mortality rate maps are widely used. Hierarchical Bayes methods are increasingly popular tools for creating such maps, since they permit smoothing of the fitted rates toward spatially local mean values, with more unreliable estimates (those arising in low-population regions)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996